Large Displacement Optical Flow with Adaptive Feature Match

نویسندگان

  • Xiaoping Zhang
  • Guoxin Li
چکیده

This paper presents an accurate large displacement optical flow estimation approach by adaptively integrate the local feature match. Despite coarse-to-fine warping approach can handle large displacement optical flow; however, there is inherent limit for small object with large motion. And recently integration of feature match to the variational framework has relaxed the limit, but raised another problem of ambiguous feature matching due to poor feature descriptor. Address the aforementioned problem, in this paper we propose an adaptive integration approach of local feature match. The essence is that we only keep the robust feature and remove those unstable features (e.g, textureless region) to improve the flow accuracy. The adaptive approach substantially decreases the computational cost by remove uncertain features and leads to more robust performance by excluding unreliable matches. We qualitatively and quantitatively compared to the conventional flow methods on Middlebury and Sintel benchmark and show that we achieve more accurate and promising results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow

Dense and accurate motion tracking is an important requirement for many video feature extraction algorithms. In this paper we provide a method for computing point trajectories based on a fast parallel implementation of a recent optical flow algorithm that tolerates fast motion. The parallel implementation of large displacement optical flow runs about 78× faster than the serial C++ version. This...

متن کامل

Bio-inspired flight control and visual search with CNN technology

In this paper it is shown that by building on parallel topographic CNN preprocessing of image flows, efficient terrain exploration and visual navigation algorithms can be developed. The approach combines several channels of nonlinear spatio-temporal feature detectors within an analogic CNN algorithm and produces unique binary maps of salient feature locations. This preprocessing scheme is embed...

متن کامل

A Study of Feature Extraction Algorithms for Optical Flow Tracking

Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbors will...

متن کامل

A Probabilistic Approach to Large Displacement Optical Flow and Occlusion Detection

This paper deals with the computation of optical flow and occlusion detection in the case of large displacements. We propose a Bayesian approach to the optical flow problem and solve it by means of differential techniques. The images are regarded as noisy measurements of an underlying ’true’ image-function. Additionally, the image data is considered incomplete, in the sense that we do not know ...

متن کامل

High-speed movement analysis from log-polar images using dynamic feature extraction and correlation

There are several methods to measure movement in front of a mobile vehicle (robot) equipped with a camera. Some methods detect movement from the analysis of the optical flow, while other methods detect movement from the displacement of objects or part of the objects (corners, edges, etc.) Those methods based on the optical flow are suitable for high speed analysis (say 25 images per second) but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015